PERIDYNAMICS FOR DOMAIN AGNOSTIC ANALYSIS

Erdogan Madenci

Aerospace and Mechanical Engineering University of Arizona, Tucson AZ

The Institute of Fundamental Technological Research Polish Academy of Sciences in Warsaw November 21, 2022

Outline

- Peridynamics
- **O** Peridynamic differential operator
- Multi-physics modeling
- Multi-scale modeling
- Material failure
- Solution to PDEs
- **O** Discovery of PDEs
- **O** Data manipulation
- Final remarks

Peridynamics

 \odot Unifies the mechanics of continuous and discontinuous media.

B

- \odot Continuum approach without spatial derivatives.
 - $\circ~$ Removes mathematical singularities.
- \odot Restores nonlocal interactions.
- \odot Introduces an internal length parameter.
- \odot Links different length scales.
- \odot Enables autonomous damage initiation and growth.
 - Damage nucleation in unspecified locations
 - Damage propagation along unguided paths
 - Emergence of multiple damage sites and their complex interactions

Peridynamic differential operator

\odot Enables differentiation through integration.

- $\,\circ\,$ M variables and Nth order
- \circ Mathematically it never blows up always valid.

PDDO provides nonlocal form of local differential equations in space and time.

Peridynamic functions

Orthogonal to each term in Taylor Series Expansion except for the term involving the desired derivative.

Orthogonality condition

$$\int_{H_{\mathbf{x}}} \xi_{1}^{n_{1}} \xi_{2}^{n_{2}} \cdots \xi_{M}^{n_{N}} g_{N}^{p_{1}p_{2}\cdots p_{N}}(\boldsymbol{\xi}) dV_{\mathbf{x}'} = n_{1}! n_{2}! \cdots n_{N}! \delta_{n_{1}p_{1}} \delta_{n_{2}p_{2}} \cdots \delta_{n_{N-1}p_{N-1}} \delta_{n_{N}p_{N}}$$

Although arbitrary in form, complete polynomials lead to analytical expressions.

Madenci et al., 2016, Peridynamic differential operator and its applications, CMAME, 304:408–451

 $H_{\mathbf{r}'}$

 x_1

 x_2

 H_{\star}

PDDO for 2D analysis

Taylor series expansion

$$f\left(\mathbf{x}+\boldsymbol{\xi}\right) = f\left(\mathbf{x}\right) + \xi_{1} \frac{\partial f\left(\mathbf{x}\right)}{\partial x_{1}} + \xi_{2} \frac{\partial f\left(\mathbf{x}\right)}{\partial x_{2}} + \frac{1}{2!}\xi_{1}^{2} \frac{\partial^{2} f\left(\mathbf{x}\right)}{\partial x_{1}^{2}} + \frac{1}{2!}\xi_{2}^{2} \frac{\partial^{2} f\left(\mathbf{x}\right)}{\partial x_{2}^{2}} + \xi_{1} \xi_{2} \frac{\partial^{2} f\left(\mathbf{x}\right)}{\partial x_{1} \partial x_{2}} + R(2,\mathbf{x})$$

Multiply each term with PD functions and integrate over family

$$\int_{H_{\mathbf{x}}} f(\mathbf{x}+\boldsymbol{\xi}) \ g_{2}^{p_{1}p_{2}}(\boldsymbol{\xi}) dV_{\mathbf{x}'} = f\left(\mathbf{x}\right) \int_{H_{\mathbf{x}}} g_{2}^{p_{1}p_{2}}(\boldsymbol{\xi}) dV_{\mathbf{x}'} + \frac{\partial f\left(\mathbf{x}\right)}{\partial x_{1}} \int_{H_{\mathbf{x}}} \xi_{1} \ g_{2}^{p_{1}p_{2}}(\boldsymbol{\xi}) dV_{\mathbf{x}'} + \frac{\partial f\left(\mathbf{x}\right)}{\partial x_{2}} \int_{H_{\mathbf{x}}} \xi_{2} \ g_{2}^{p_{1}p_{2}}(\boldsymbol{\xi}) dV_{\mathbf{x}'} + \frac{\partial^{2} f\left(\mathbf{x}\right)}{\partial x_{1}^{2}} \int_{H_{\mathbf{x}}} \xi_{1} \ g_{2}^{p_{1}p_{2}}(\boldsymbol{\xi}) dV_{\mathbf{x}'} + \frac{\partial^{2} f\left(\mathbf{x}\right)}{\partial x_{2}^{2}} \int_{H_{\mathbf{x}}} \frac{1}{2!} \xi_{2}^{2} \ g_{2}^{p_{1}p_{2}}(\boldsymbol{\xi}) dV_{\mathbf{x}'} + \frac{\partial^{2} f\left(\mathbf{x}\right)}{\partial x_{1} \partial x_{2}} \int_{H_{\mathbf{x}}} \xi_{1} \ \xi_{2} \ g_{2}^{p_{1}p_{2}}(\boldsymbol{\xi}) dV_{\mathbf{x}'} + \frac{\partial^{2} f\left(\mathbf{x}\right)}{\partial x_{1}^{2}} \int_{H_{\mathbf{x}}} \xi_{1} \ \xi_{2} \ g_{2}^{p_{1}p_{2}}(\boldsymbol{\xi}) dV_{\mathbf{x}'} + \frac{\partial^{2} f\left(\mathbf{x}\right)}{\partial x_{2}^{2}} \int_{H_{\mathbf{x}}} \frac{1}{2!} \xi_{2}^{2} \ g_{2}^{p_{1}p_{2}}(\boldsymbol{\xi}) dV_{\mathbf{x}'} + \frac{\partial^{2} f\left(\mathbf{x}\right)}{\partial x_{1} \partial x_{2}} \int_{H_{\mathbf{x}}} \xi_{1} \ \xi_{2} \ g_{2}^{p_{1}p_{2}}(\boldsymbol{\xi}) dV_{\mathbf{x}'}$$
Orthogonality condition

$$\frac{1}{n_1!n_2!} \int_{H_x} \xi_1^{n_1} \xi_2^{n_2} g_2^{p_1 p_2}(\xi) dA_{\mathbf{x}'} = \delta_{n_1 p_1} \delta_{n_2 p_2} \qquad n_1, n_2, p_1, p_2 = 0, 1, 2$$

$$\frac{\partial^{p_1+p_2} f(\mathbf{x})}{\partial x_1^{p_1} \partial x_2^{p_2}} = \int_{H_{\mathbf{x}}} f(\mathbf{x} + \boldsymbol{\xi}) g_2^{p_1 p_2}(\boldsymbol{\xi}) dV_{\mathbf{x}'} \quad \text{for } p_1 + p_2 \le 2$$

PD derivatives

Madenci et al., 2016, Peridynamic differential operator and its applications, CMAME, 304:408–451

PD functions

$$g_{2}^{p_{1}p_{2}}(\xi) = a_{10}^{p_{1}p_{2}} w_{1}(|\xi|)\xi_{1} + a_{01}^{p_{1}p_{2}} w_{1}(|\xi|)\xi_{2} + a_{20}^{p_{1}p_{2}} w_{2}(|\xi|)\xi_{1}^{2} + a_{02}^{p_{1}p_{2}} w_{2}(|\xi|)\xi_{2}^{2} + a_{11}^{p_{1}p_{2}} w_{2}(|\xi|)\xi_{1}\xi_{2}$$
Degree of interactions
$$w_{1}(|\xi|) = w_{2}(|\xi|)$$
Orthogonality condition
$$Aa = b$$

Shape matrix

Coef. of PD functions

Madenci et al., 2016, Peridynamic differential operator and its applications, CMAME, 304:408–451

PD discretization

PD discretization of domain

The family is nonsymmetric The family is always near the boundaries $\uparrow x_2$ nonsymmetric $\uparrow t$ 0 0 0 0 0 $H_{\mathbf{x}_{(N)}}$ $H_{\mathbf{x}_{(k)}}$ 0 Aik $H_{\mathbf{x}_{(k)}}$ • • • (k) • • • • H_{X(k)} 0 0 0 0 1 0 1 0 1 0 °**X**(k) ° ° ° 0:0: (k) • • • 0 0 0 0:0:0 0 0 0 0 0 0 0 0 0 0 0 0:0 $H_{\mathbf{x}_{(k)}}$ $H_{\mathbf{x}}$ X(k) 0 0 0 0 0 0 0 • **X**(1) 0 0 0 x_1 x_1 0 0 0 0 0 `o´

PD discretization of space-time domain

Numerical implementation

$$\begin{pmatrix} \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \end{pmatrix} \Phi(x_1, x_2) = Q(x_1, x_2) \text{ with } 0 \le x_1 \le \ell_1, \ 0 \le x_2 \le \ell_2 \\ \frac{\partial}{\partial x_1} \Phi(x_1 = 0, x_2) = p(x_2), \ \frac{\partial}{\partial x_1} \Phi(x_1 = \ell_1, x_2) = q(x_2) \\ \Phi(x_1, x_2 = 0) = r(x_1), \ \Phi(x_1, x_2 = \ell_2) = s(x_1)$$

$$\sum_{j} \left[g_{2}^{20}(x_{1(j)} - x_{1(k)}, x_{2(j)} - x_{2(k)}) + g_{2}^{02}(x_{1(j)} - x_{1(k)}, x_{2(j)} - x_{2(k)}) \right] A_{(j)} \Phi(x_{1(j)}, x_{2(j)}) = Q(x_{1(k)}, x_{2(k)})$$

$$\sum_{j=1} \Phi(x_{1(j)}, x_{2(j)}) g_2^{10}(x_{1(j)} - x_{1(k)}, x_{2(j)} - x_{2(k)}) A_{(j)} = p(x_{2(k)}) \text{ for } x_{1(k)} = 0 + \Delta x_1/2$$

$$\sum_{j=1} \Phi(x_{1(j)}, x_{2(j)}) g_2^{10}(x_{1(j)} - x_{1(k)}, x_{2(j)} - x_{2(k)}) A_{(j)} = q(x_{2(k)}) \text{ for } x_{1(k)} = \ell_1 - \Delta x_1/2 ,$$

$$\sum_{j=1} \Phi(x_{1(j)}, x_{2(j)}) g_2^{00}(x_{1(j)} - x_{1(k)}, x_{2(j)} - x_{2(k)}) A_{(j)} = r(x_{1(k)}) \text{ for } x_{2(k)} = 0 + \Delta x_2/2 ,$$

$$\sum_{j=1} \Phi(x_{1(j)}, x_{2(j)}) g_2^{00}(x_{1(j)} - x_{1(k)}, x_{2(j)} - x_{2(k)}) A_{(j)} = s(x_{1(k)}) \text{ for } x_{2(k)} = \ell_2 - \Delta x_2/2.$$

$$\begin{bmatrix} \mathbf{L} & \mathbf{c}^T \\ \mathbf{c} & \mathbf{0} \end{bmatrix} \begin{cases} \mathbf{u} \\ \mathbf{\lambda} \end{cases} = \begin{cases} \mathbf{b} \\ \mathbf{d} \end{cases}$$

Convergence

 δ – convergence (local)

Bobaru etal., 2009, Convergence, adaptive refinement, and scaling in 1D peridynamics. IJNME, 77, 852–877.

Numerical error

 $e = e(\delta, m, \Delta x, w, R, N, Q)$

- N is dictated by the highest order of differentiation
- Interaction domain (number of family members)

$$\begin{cases} \delta = m\Delta x \\ N \le m \le N+2 \end{cases} \implies \delta = (N+1)\Delta x$$

• Weight function,
$$w(\xi) = e^{-(2\xi/\delta)^2}$$

- Integration error, Q
- Remainder error, *R*

Differentiation of a step function

 $u(x) = H(x - x_0)$ with $x_0 = 0$ in $-0.05 \le x \le 0.05$

$$\frac{du}{dx} = \sum_{j=1}^{\infty} u(x) \Big[g_2^1(x_{(j)} - x_{(k)}) \Big] \ell_{(j)}$$

Differentiation of discrete data

Nakamura et al., 2008. Numerical differentiation for the second order derivative of functions with several variables, J. of Comp. and App. Math., http://www.researchgate.net/publication/228972292

Madenci et al., 2016, Peridynamic differential operator and its applications, CMAME, 304 : 408–451

PD Failure/damage

When the elastic bond stretch reaches its critical value, bond breakage occurs

$$\hat{\mu}(\mathbf{x}, \mathbf{x}', t) = \begin{cases} 1, & s(\mathbf{x}, \mathbf{x}', t) < s_c \\ 0, & s(\mathbf{x}, \mathbf{x}', t) \ge s_c \end{cases}$$

$\phi(\mathbf{x},t) = 1 - \frac{\int\limits_{H_{\mathbf{x}}} \hat{\mu}(\mathbf{x},\mathbf{x}',t) dV_{\mathbf{x}'}}{\int\limits_{H_{\mathbf{x}}} dV_{\mathbf{x}'}}$

Local damage is the ratio of number of broken bonds to total number of bonds

Multi-physics modeling

- Cracking in charring materials during ablation
- Corrosion
- **O** Electrodeposition
- **O** Electromigration
- $\circ~$ Fuel pellet cracking

Charring Process

- Heat conduction in TPS
 - Internal decomposition of material
 - Decomposition of material to char
 - Formation of pyrolysis gas
 - Gases in the boundary react with char
 - Surface recession- chemical reactions, erosion and combustion

Virgin material decomposes to char. Char at surface has better insulation properties than virgin material.

Amar, A., Calvert, N., & Kirk, B. (2011, January). Development and verification of the charring ablating thermal protection implicit system solver. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (p. 144).

Governing equations for ablation

- Conservation of mass
 - Equation for decomposition
- Conservation of energy
 - PD form of nonlinear heat equation with surface recession
- Conservation of linear momentum
 - Peridynamic equilibrium equation with shrinkage and expansion

Decomposition of material

 Virgin material decomposes to char and releases pyrolysis gas upon combustion due to heating

- Density of decomposed components governed through Arrhenius law
- A: pre- exponential factor r: order of reaction R: universal gas constant
- E: activation energy

$$\dot{\rho}(\mathbf{x},t) = -A\rho_{v} \left(\frac{\rho(\mathbf{x},t) - \rho_{c}}{\rho_{v}}\right)^{r} \exp\left(-\frac{E}{RT(\mathbf{x},t)}\right)$$

Material decomposition leads to loss of mass; thus, shrinkage and degradation of material properties

PD form of nonlinear heat conduction

Classical equation

PD heat equation

$$\begin{split} \rho(\mathbf{x},t)C_{p}(\mathbf{x},t)\dot{T}(\mathbf{x},t) &= k(\mathbf{x},t) \left(\frac{6}{\pi\delta^{4}} \int_{H_{\mathbf{x}}} \frac{T(\mathbf{x}',t) - T(\mathbf{x},t)}{|\mathbf{\xi}|} dV_{\mathbf{x}'}\right) \\ &+ \left(\frac{9}{4\pi\delta^{3}} \int_{H_{\mathbf{x}}} \frac{k(\mathbf{x}',t) - k(\mathbf{x},t)}{|\mathbf{\xi}|} dV_{\mathbf{x}'}\right) \left(\frac{9}{4\pi\delta^{3}} \int_{H_{\mathbf{x}}} \frac{T(\mathbf{x}',t) - T(\mathbf{x},t)}{|\mathbf{\xi}|} dV_{\mathbf{x}'}\right) \\ &- C_{pg}(\mathbf{x},t) \left(\dot{\mathbf{m}}_{g}(\mathbf{x},t)\right) \cdot \left(\frac{9}{4\pi\delta^{3}} \int_{H_{\mathbf{x}}} \frac{T(\mathbf{x}',t) - T(\mathbf{x},t)}{|\mathbf{\xi}|} \mathbf{n}(\mathbf{\xi}) dV_{\mathbf{x}'}\right) - \dot{\rho}(\mathbf{x},t) \left(Q + h(\mathbf{x},t) - h_{g}(t)\right) \end{split}$$

The heat equation considers energy convection due pyrolysis gases and energy consumption for decomposition

Nonlinear boundary conditions

Classical equation

Rate of mass combusted at the surface comes from rate of surface recession

 $\dot{m}_{com}(\mathbf{x},t) = \rho_c \dot{S}(\mathbf{x},t)$

PD form of BC through PD differential operator

$$-k(\mathbf{x},t) \left(\int_{H\mathbf{x}} g_2^{010}(\boldsymbol{\xi}) \left(T(\mathbf{x}',t) - T(\mathbf{x},t) \right) dV_{\mathbf{x}'} \right) \Big|_{x_2 = \ell} = q(\mathbf{x},t) - \sigma \varepsilon \left(T_s^4(\mathbf{x},t) - T_{\infty}^4 \right)$$
$$-h_{conv} \left(T_s(\mathbf{x},t) - T_{\infty} \right) + h_{com} \dot{m}_{com}(\mathbf{x},t)$$

Balance of energy entering and leaving on material boundary

Peridynamic equilibrium equation

- Material response is isotropic and elastic
 - Deformation due to thermal expansion
 - Deformation due to shrinkage from mass loss

$$\rho(\mathbf{x},t)\ddot{\mathbf{u}}(\mathbf{x},t) = \int_{H_{\mathbf{x}}} \mathbf{f}(\mathbf{u}'-\mathbf{u},\mathbf{x}'-\mathbf{x},t)dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x},t) \qquad s = \frac{|\mathbf{y}'-\mathbf{y}| - |\mathbf{x}'-\mathbf{x}|}{|\mathbf{x}'-\mathbf{x}|}$$

$$\mathbf{f}(\mathbf{u}'-\mathbf{u},\mathbf{x}'-\mathbf{x},t) = c\left(s(\mathbf{x},\mathbf{x}',t) - \alpha_{avg}(\mathbf{x},\mathbf{x}',t)\Theta_{avg}(\mathbf{x},\mathbf{x}',t) - \gamma\Omega_{avg}(\mathbf{x},\mathbf{x}',t)\right)\frac{\mathbf{y}'-\mathbf{y}}{|\mathbf{y}'-\mathbf{y}|}$$

$$\mathbf{f}(\mathbf{u}'-\mathbf{u},\mathbf{x}'-\mathbf{x},t) = c \left(\left(\mathbf{n}(\xi) \otimes \mathbf{n}(\xi) \right) \frac{\mathbf{u}(\mathbf{x}',t) - \mathbf{u}(\mathbf{x},t)}{|\xi|} - \alpha_{avg}(\mathbf{x},\mathbf{x}',t) \frac{\Theta(\mathbf{x},t)\mathbf{n}(\xi) - \Theta(\mathbf{x}',t)\mathbf{n}(\xi')}{2} - \gamma \frac{\Omega(\mathbf{x},t)\mathbf{n}(\xi) - \Omega(\mathbf{x}',t)\mathbf{n}(\xi')}{2} \right)$$

Shrinkage from density change

$$\Omega(\mathbf{x},t) = \frac{\left(\rho(\mathbf{x},t) - \rho_{v}\right)}{\rho_{v}}$$

Degraded material property

- Material degrades due to ablation
- Virgin and char material properties can be measured
- Intermediate state is approximated through linear interpolation based on density change

Thermal conductivity	$k(\mathbf{x},t) = F(\mathbf{x},t)k_v + (1 - F(\mathbf{x},t))k_c$
Specific heat	$C_{p}(\mathbf{x},t) = F(\mathbf{x},t)C_{pv} + (1 - F(\mathbf{x},t))C_{pc}$
Coefficient of thermal expansion	$\alpha(\mathbf{x},t) = F(\mathbf{x},t)\alpha_{v} + (1 - F(\mathbf{x},t))\alpha_{c}$
Volume fraction	$F(\mathbf{x},t) = \frac{\rho_v}{\rho_v - \rho_c} \left(1 - \frac{\rho_c}{\rho(\mathbf{x},t)} \right)$

Numerical Implementation

- 3D discretization of the geometry
- Explicit update of loss of mass equation

$$\rho_{(k)}^{n} = \rho_{(k)}^{n-1} + \dot{\rho}_{(k)}^{n-1} \Delta t$$

Explicit update for heat equation

$$T_{(k)}^{n} = T_{(k)}^{n-1} + \dot{T}_{(k)}^{n-1} \Delta t$$

- Adaptive dynamic relaxation for EOM
- Update surface recession

$$S^n = S^{n-1} + \dot{S}^{n-1} \Delta t$$

Implicit-Explicit algorithm

Crack propagation in 3D block

 $L = 0.01m \qquad W = 0.015m \qquad H = 0.004m$ $\Delta = 1 \times 10^{-4} m \qquad \Delta t = 5 \times 10^{-3} s$ $q(\mathbf{x}, t) = \begin{cases} 279.7 \text{kW/m}^2, & x_2 = L/2\\ 0, & \text{other surfaces} \end{cases}$

Inhomogeneity through Gaussian distribution with mean 1 and STD 0.1 for material properties

Property	Unit	Value
Fiber Young's modulus, E_f	GPa	72.4
Resin Young's modulus, E_r	GPa	6.0
Energy release rate, G_{IC}	J/m^2	400
Thermal expansion coefficient of fiber and resin, α_f, α_r	\mathbf{K}^{-1}	8.59×10^{-5}
Char thermal expansion coefficient α_c	\mathbf{K}^{-1}	$-7.42 \times 10^{-5}, \rho/\rho_0 \ge 0.492$

Cracking due to expansion and shrinkage

At 5s, formation of surface crack due to expansion

At 15 s, crack branching due to combined expansion and decomposition

Crack propagation due to shrinkage

In-depth propagation of crack at 50s and 85 s

Multi-scale modeling

- Homogenization
- **O** Micro-architected materials
- $\circ~$ Design of cement micro-structure

Peridynamics for homogenization

Short-fiber "random" microstructure

Property	Matrix	Short-fiber
E (GPa)	45	450
ν	0.18	0.17
α (μ/°C)	64.8	-0.4

Sertse et al., 2018, Challenge problems for the benchmarking of micromechanics analysis: Level I initial results, *Journal of Composite Materials*, Vol. 52, pp. 61–80

Effective elastic properties

Approach	<i>C</i> ₁₁	<i>C</i> ₁₂	C ₁₃	<i>C</i> ₁₄	C ₁₅	C ₁₆	<i>C</i> ₂₂	C ₂₃	C ₂₄	C ₂₅	C ₂₆
GMC	52.83	11.53	11.53	0	0	0	53.08	11.53	0	0	0
DIGIMAT-MF/MT	57.15	12.82	12.83	0	0	0	57.15	12.83	0	0	0
DIGIMAT-MF/DI	57.35	12.86	12.88	0	0	0	57.35	12.88	0	0	0
Altair MDS	59.64	13.56	13.36	0.06	-0.58	0.54	61.67	13.37	0.53	-0.27	-0.14
ESI	61.65	14.03	13.85	0.08	-0.64	0.59	63.81	13.85	0.58	-0.30	-0.23
SwiftComp/3D FEA	59.60	13.66	13.47	0.05	-0.60	0.56	61.70	13.47	0.55	-0.27	-0.12
PDUC	54.83	12.38	12.43	0.02	0	0	54.83	12.38	0.57	0.02	0
Approach	C ₃₃	C ₃₄	C ₃₅	C ₃₆	C ₄₄		C ₄₅	C ₄₆	C ₅₅	C ₅₆	C ₆₆
GMC	52.86	0	0	0	20.53		0	0	20.53	0	20.53
DIGIMAT-MF/MT	57.26	0	0	0	22.18		0	0	22.18	0	21.16
DIGIMAT-MF/DI	57.46	0	0	0	22.26		0	0	22.26	0	22.24
Altair MDS	58.83	0.69	-0.09	-0.44	23.32		-0.44	-0.31	23.24	0.08	23.52
ESI	60.93	0.81	-0.06	-0.48	24.06		-0.50	-0.38	23.98	0.10	24.25
SwiftComp/ 3D FEA	58.75	0.70	-0.07	-0.45	23.24		-0.45	-0.32	23.16	0.08	23.45
PDUC	55.24	0.7	0	0	21.35		0	0	22.23	0.09	22.00

Micro-architected materials

(GPa)	E_{11}	<i>E</i> ₂₂	<i>E</i> ₃₃	G_{23}	G_{31}	G_{12}	<i>v</i> ₂₃	<i>v</i> ₃₁	<i>v</i> ₁₂
Octet	7.68	7.69	7.71	3.87	3.86	3.86	0.28	0.28	0.28
Rhombic	7.50	7.48	7.48	3.13	3.15	3.14	0.25	0.25	0.25
Rhoctan	8.66	8.65	8.65	2.74	2.74	2.75	0.23	0.23	0.23

Random cement micro-structures

Li et al., 2022, "Effect of water-cement ratio and size on tensile damage in hardened cement paste: Insight from peridynamic simulations," Construction and Building Materials, Vol. 356, 129256

Stress-strain response

	Peak stress (MPa)	Max. strain	Young's modulus (Gpa)	Energy release rate (J/m ²)
No failure	65.97	2.83E-3	39.78	5.67
Failure	58.04	2.57E-3	36.68	4.21

Li et al., 2022, "Effect of water-cement ratio and size on tensile damage in hardened cement paste: Insight from peridynamic simulations," Construction and Building Materials, Vol. 356, 129256

Material failure

- High velocity impact/penetration
- Damage due to sand impact
- Frangibility of glass
- CAI damage in composites
- Fiber steered composites
- Failure in polymers
- Fatigue life
 - Composites
 - Metals

Damage due to sand particle impact

- Impactor kinetics
- Contact model
- > Multiple damage sites
- Material removal

Single particle impact

V = 50 m/s

V = 90 m/s

Conical crack profiles

Material removal by lateral cracks on the surface

Anicode et al.2020, "Peridynamic Modeling of Damage due to Multiple Sand Particle Impacts in the Presence of Contact and Friction," 61th SciTech Conference, Orlando, Florida, AIAA-2020-0968
Multiple sand particles

Coalescence of multiple cracks

Anicode et al.2020, "Peridynamic Modeling of Damage due to Multiple Sand Particle Impacts in the Presence of Contact and Friction," 61th SciTech Conference, Orlando, Florida, AIAA-2020-0968

Frangibility in glass

Crack initiation and growth in CMC

- As ratio of coating-matrix failure stress decreases, a secondary crack initiates in the coating earlier
- As coating thickness increases, a secondary crack initiates when the primary crack is closer to the coating

Mitts et al., 2020, "Axisymmetric peridynamic analysis of crack deflection in a single strand ceramic matrix composite" Engineering Fracture Mechanics, 107074.

Rubber sheet with double edge cracks

Calibrate critical stretch from load-displacement curve

Hocine NA, Abdelaziz MN and Mesmacque G. Experimental and numerical investigation on single specimen methods of determination of J in rubber materials. Int J Fract 1998; 94: 321–338.

B Talamini, Y Mao, L Anand Progressive damage and rupture in polymers Journal of the Mechanics and Physics of Solids 2018 111, 434-457

Damage initiation, growth and rupture

a = 28mm

Behera et al., 2020, "Peridynamic simulation of finite elastic deformation and rupture in polymers" Engineering Fracture Mechanics, 236, 107226

Polydimythlsiloxane (PDMS) sheets

Polymer sheet with an edge crack Experimental observation

Polymer sheet with an internal crack

Experimental observation

Zhang et al. 2017, Numerical Simulation and Experimental Study of Crack Propagation of Polydimethylsiloxane. Procedia engineering, 214, 59-68. Behera et al., 2020, "Peridynamic simulation of finite elastic deformation and rupture in polymers" Engineering Fracture Mechanics, 236, 107226

Solution to hyperbolic PDEs

- \circ Time dependent
 - \circ $\,$ Sod's shock tube $\,$
- \circ Time independent
 - \circ Eikonel equation

Inherent challenges with hyperbolic equations

Many systems appear as conservation law

 $\left|\nabla T(x, y)\right|^2 = \frac{1}{\upsilon^2(x, y)}$ with $T(x_s, y_s) = 0$

Steady-state high-frequency wave equation

Solution does not smooth out with time Discontinuities persist and require accurate approximation Knowledge of characteristic directions are essential Information travels along characteristics Solution should ideally preserve conservation of energy Presence of numerical diffusion (or numerical viscosity) is unavoidable Central difference schemes usually break down near discontinuities Smooth initial conditions do not guarantee smooth solution of NL equations – shock Determination of single valued solution requires numerical dissipation

Directional nonlocality

Isotropic Eikonal equation – P waves

Velocity field - Marmousi

 $\Delta = 0.02 \text{ km}$ $\delta = 2\Delta$ $K = 101 \times 101$ Convergence $\|\mathbf{F}(\mathbf{u})\| < 1.8777 \times 10^{-13}$

Bekar et al. ,2022, "Solving the Eikonal equation for compressional and shear waves in anisotropic media using peridynamic differential operator," Geophysical Journal International, Vol. 229, pp. 1942–1963,

v(km/s) 4.11 3.83

Comparison of solutions

PD captures the sharp change in traveltimes around the region with the highest velocity gradient

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences of the USA, 93(4), 1591–1595. Bekar et al. ,2022, "Solving the Eikonal equation for compressional and shear waves in anisotropic media using peridynamic differential operator," Geophysical Journal International, Vol. 229, pp. 1942–1963,

Reference: Fast Marching with fine mesh

Error measure against reference solution

Bekar et al. ,2022, "Solving the Eikonal equation for compressional and shear waves in anisotropic media using peridynamic differential operator," Geophysical Journal International, Vol. 229, pp. 1942–1963,

PDDO for Euler equations

- Conservation of mass, momentum and energy
- Challenging nonlinear equation

- ρ density
- *u* velocity
- *p* pressure

 $\gamma = 1.4$

- E total energy per unit volume
- e internal energy per unit mass

Initial conditions for Sod's shock tube

Flux vector splitting method

Van Leer, B. "Flux-vector splitting for the Euler equation." Upwind and high-resolution schemes. Springer, Berlin, Heidelberg, 1997. 80-89.

PD solution of Euler equations

Density

Pressure

Velocity

Close agreement with analytical solution

Captures the shock and rarefaction w/o special treatment

Bekar et al., 2022, "On the solution of hyperbolic equations using the peridynamic differential operator," Computer Methods in Applied Mechanics and Engineering, Vol. 391, 114574

Remarks

 $\,\circ\,$ PDDO enables the solution of different types of Hyperbolic PDEs.

- \circ Weight function enables upwinding in a natural way
- $\,\circ\,$ No special treatment is necessary in the solution process
- $\,\circ\,$ Same discretization applies regardless of the domain irregularity
- $\,\circ\,$ It captures the shocks
- $\,\circ\,$ Numerical stability is always ensured

Discovery

- $\circ~$ Learning PDEs ~
- \circ Nonlocal PINN
- **O** Unsupervised learning

Learning partial differential equations

Discover the significant terms in PDEs that describe a particular phenomena based on the measured data

$$\frac{\partial u(\mathbf{x},t)}{\partial t} + \mathcal{L}(u) = 0 \quad \mathbf{x} \in \Omega \text{ and } 0 < t < T$$
$$\mathcal{B}(u) = 0 \quad \mathbf{x} \in \partial \Omega$$
$$u(\mathbf{x},0) = u_0(\mathbf{x}) \quad \mathbf{x} \in \Omega$$

> Determination of $\mathcal{L}(u)$

Bekar, A.C. and Madenci, E., 2021, "Peridynamics enabled learning partial differential equations," Journal of Computational Physics, Vol. 434, 110193

H. Schaeffer, Learning partial differential equations via data discovery and sparse optimization, Proc. R. Soc. A. 473 (2017) 20160446

Coefficient α corresponding to smallest acceptable λ identifies the PDE

Cahn-Hilliard equation

$$\begin{bmatrix} u_{t} = -\frac{1}{2} \nabla^{4} u + \nabla^{2} (u^{3} - u) \text{ for } 0 \le x, y \le L_{x} = L_{y} = 50\pi \\ \hline \\ Periodic BC \\ \hline \\ u(x = 0, y, t) = u(x = L_{x}, y, t) \\ u(x, y = 0, t) = u(x, y = L_{y}, t) \\ \hline \\ u(x, y = 0, t) = u(x, y = L_{y}, t) \\ \hline \\ u^{t+Ar}(\mathbf{x}_{(k)}) = \Delta t \begin{bmatrix} \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)})^{3} g_{4}^{30}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} + \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)})^{3} g_{4}^{30}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} + \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{22}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} \\ -\frac{1}{2}\Delta t \begin{bmatrix} \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{40}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} + \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{22}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} \\ + \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{40}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} \\ -\Delta t \begin{bmatrix} \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{20}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} + \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{22}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} \\ -\Delta t \begin{bmatrix} \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{20}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} + \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{22}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} \\ -\Delta t \begin{bmatrix} \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{20}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} + \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{22}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} \\ -\Delta t \begin{bmatrix} \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{20}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} + \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{22}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} \\ -\Delta t \begin{bmatrix} \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{20}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} + \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{20}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} \\ -\Delta t \begin{bmatrix} \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{20}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} \\ +\sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{20}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} \\ -\Delta t \begin{bmatrix} \sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{20}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} \\ +\sum_{j=1}^{N_{(k)}} u^{t+Ar}(\mathbf{x}_{(j)}) g_{4}^{20}(\xi_{l(k)(j)}, \xi_{2(k)(j)}) A_{j} \\ -\Delta t \begin{bmatrix} \sum_{j=1}^{N_{(k)}} u^$$

Recovered coefficients – C-H equation

Terms	Noise = $\%0$ ($\lambda = 0.01$)	Noise = %20 (λ = 0.01)	Noise = $\%50$ ($\lambda = 0.01$)
$\nabla^2 u$	-1.012	-1.012	-1.013
$\nabla^2 u^2$	0	0	0
$\nabla^2 u^3$	1.012	1.012	1.013
$\nabla^2 u^4$	0	0	0
$\nabla^2 u_x$	0	0	0
$\nabla^2 u_y$	0	0	0
$\nabla^2 u_{xx}$	-0.505	-0.505	-0.506
$\nabla^2 u_{yy}$	-0.505	-0.505	-0.506
$\nabla^2 u_{xy}$	0	0	0

$$u_t = -\frac{1}{2}\nabla^4 u + \nabla^2 (u^3 - u)$$

Training data set: 200 Testing data set: 200

Relative error – C-H equation

Ground truth coefficients

Recovered coefficients

- % 50 noise

Relative error

Data manipulation

- **O** Data reduction/compression
- Data smoothing
- **O** Data enhancing
- Interpolation
- Regression
- **O** Digital image correlation

Madenci et al., 2022, "Peridynamics for data estimation, image compression/recovery and model reduction," Journal of Peridynamics and Nonlocal Modeling, Vol. 4, pp. 159-200

Data reduction/compression

262,144 pixels

572 pixels

118,518 pixels

Recovered pixels (error of 9.07%)

Recovered pixels (error of 0.88%)

Data smoothing

Data enhancing

Image processing -DIC

- Experimental Images
 - Bottom constrained, top pulled.
- Contrast: Good
- Noise: Low
- Shift: N/A
- Time steps (Images): 12
- Tracked points were picked in the following ranges:
 - X : (50, 350)
 - Y:(75,965)
- Also, a point at (190, 540) was picked to mask the hole.
- Total Points: 1481
- Minimum Inter-Point Spacing: **10 px**
- The area outside of the tracked points was masked.

Original Images courtesy of The Society for Experimental Mechanics

Madenci et al., 2022, "Peridynamics Enabled Digital Image Correlation for Tracking Crack Paths," Engineering with Computers, https://doi.org/10.1007/s00366-021-01592-4

(-0.00763, 0.00151)

 \mathcal{E}_{VV}

Normal strain – y-direction

PD-DIC for tracking discontinuous paths

Images of deforming specimen

Track randomly picked points

PDDO for displacement and strain fields

PDDO for strain compatibility parameter

Calculate damage certainty using probability density function

Apply regression model, MARS to damage certainty to obtain crack path

$$s = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} - 2 \frac{\partial^2 \varepsilon_{xy}}{\partial x \partial y} \begin{cases} = 0 & \text{Medium is continuous} \\ \neq 0 & \text{Medium is discontinuous} \end{cases}$$

PD-DIC for crack detection

PD-DIC for slip band detection

Images from Nickel-based Superalloy 718

Frame 1

PD-DIC displacement construction from images

PD-DIC strain field evaluation

Frame 1

 \mathcal{E}_{xy}

PD-DIC slip band detection

Unlike Heaviside DIC, it provides the specific location of each slip band with beginning and end points.

Frame 2

Frame 1

Heaviside DIC

Final remarks

- The nonlocal Peridynamic Differential Operator (PDDO):
 - allows for accurate solution of field equations in the presence of discontinuities
 - \circ enables upwinding in a natural way through a weight function
 - handles discontinuities without any special treatments in a natural manner
 - enables the evaluation of derivatives of any order in a multidimensional space
 - \circ captures cracking as part of the solution
 - \circ size effect in multi-scale material design
 - provides a unified approach to transferring information within a set of discrete data and among data sets.